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Abstract. A new method for calculating the critical temperature and critical exponents of 
classical discrete models, based on the renormalisation-group method and the cluster 
variational method, is developed. In the lowest approximation, using the mean field 
approximation and quasichemical approximation, the results for the two-dimensional Ising 
model are obtained within 2% accuracy. 

The recent progress in experimental investigation of order-disorder phase transitions 
in physisorbed and chemisorbed systems has stimulated a great deal of interest in 
calculations of critical properties of two-dimensional lattice gas models which are 
assumed to be a good approximation of real adsorbates on crystal surfaces. A good 
basis for such calculations is the real-space renormalisation-group method devised by 
Niemeijer and van Leeuwen (1974) that has made great progress since then (Burkhardt 
and van Leeuwen 1982). All the real-space renormalisation-group methods (except 
for phenomenological approaches) developed till now make use of the Gibbs formula- 
tion of statistical mechanics, and the central thermodynamic quantities of interest are 
the partition function and the free energy. The various methods differ in the choice 
of the weight function determining the renormalisation-group (RG) transformation and 
in the choice of the approximative treatment of the partition function. Our approach 
is based on the correlation functions or the probabilities of state of a finite cluster of 
an infinite lattice which are approximatively calculated by the cluster variation method 
(CVM). In the choice of the weight function of the RG transformation we follow the 
majority rule of Niemeijer and van Leeuwen (1974) and Nauenberg and Nienhuis 
(1974). 

Our method yields surprisingly good results even in the lowest approximation, far 
exceeding in accuracy the results obtained with the same effort by other authors. 

We believe that this high accuracy originates in some features of our approach 
where, using CVM results with broken symmetry, we are able to make use of the 
information which is contained in the values of small odd correlation functions which 
in the other approaches possess trivial values equal to zero. 

For the sake of symmetry we shall develop the method for an Ising spin system 
instead of the lattice gas directly, and its description will be formulated in terms of 
probabilities of spin configurations (which are, in fact, the correlation functions of 
lattice gas occupation number operators). 
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Let the system be described by the Hamiltonian 

H = K ,  sisl + K 2  sisI +. , , + k, C s i s l .  . . s, 
N N  N N N  

where the even part He contains only the sums of products of an even number of spin 
variables and the part H, contains only the products of an odd number of spin variables 
and s, = f 1. The average values of the products of spin variables (correlation functions) 
which appear in (1) will be further denoted by Ci. The correlation functions Ci are 
simply related, by means of linear formulae, to the probabilities Pi of all possible 
configurations of spins defined on the cluster of sites which contains all the clusters 
appearing in (1). These probabilities can be found for any given set of coupling 
constants K i ,  hi using some version of CVM (Kikuchi 1951, Kikuchi and Brush 1967, 
Surda 1982, Surda and Karasovi 1983). The method is based on the minimisation of 
the free energy F = (H) - TS, where both the average value of the energy (H) and the 
entropy S are expressed approximately by the probabilities Pi. As was shown, CVM 

describes well the behaviour of thermodynamic and correlation functions everywhere 
but the close vicinity of critical points. To improve the results in this region, we have 
to use some RG ideas. 

We shall develop the method first for the case of a ferromagnetic phase transition, 
where the critical points lie in the subspace hi = 0 of the coupling-constant space. In 
the approximation based on a cluster with r sites we divide the whole lattice into cells 
each consisting of I d  sites and take a cluster consisting of r cells. For a given set of 
coupling constants K i ,  i = 1, . . . , s, we calculate all the probabilities Pi defined on the 
cluster of cells by CVM. Then we apply to the obtained probabilities an RG transforma- 
tion satisfying the majority rule (Nauenberg and Nienhuis 1974). The transformation 
can be written in the following way: 

PI =C Ui,P,, i = 1,.  . . , s. 
n 

Using again the equations of CVM we calculate new coupling constants K I correspond- 
ing to the probabilities PI. In this way one RG step from the coupling constants K i  
to the set of constants KI was performed. The equality K * ' =  K *  determines the fixed 
point of the transformation. We see that CVM was used twice in the RG procedure: 
first in calculating the probabilities Pi and second in obtaining the constants K I .  It 
is essential for our approach that in the first application we have to use CVM involving 
larger clusters (i.e. the higher approximation) than in the second case. That means 
that not only is the lattice scaled in the process of calculation but also the order of 
approximation. .In the paramagnetic phase all the odd correlation functions are equal 
to zero when hi = 0. Then the number of independent probabilities is equal to the 
number of even coupling constants. In the ferromagnetic phase (where the non-trivial 
fixed point occurs) the situation is different. There the symmetry is broken and all the 
even and odd correlation functions are non-zero. To preserve the correspondence 
betweer. the coupling constants and probabilities we have to increase the number of 
even coupling constants to s = j + k, where j and k are the numbers of even and odd 
coupling constants in ( l ) ,  respectively. Now the range of interaction is larger than the 
diameter of the largest cluster. Thus, evaluating KI from PI, we have to use a higher 



Renormalisation-group method for lattice gas models 2699 

approximation of CVM to preserve all probabilities of state of large clusters entering 
into (H) and determine the superfluous probabilities from the requirement of minimum 
free energy, or we have to determine the order of CVM only by the largest cluster 
obtained from the RG procedure and express the probabilities of the large clusters in 
( H )  in terms of smaller ones using the method described in Surda (1982). In the 
illustrative calculations below we shall use the second possibility. 

Taking into account that the RG transformation based on the majority rule makes 
the absolute values of non-zero odd correlation functions larger, and the fact that the 
absolute values of critical coupling constants KS increase with the order of approxima- 
tion, we see that the non-trivial fixed point of the transformation is in the ferromagnetic 
region of the coupling-constant space not far from the phase transition of the better 
of our two approximations, and it converges together with CVM critical values to the 
exact critical surface for higher approximations. It is important that for the low 
approximations the fixed point is not too close to the CVM phase transition plane, 
because the method does not work well in this area. The temperature critical exponent 
y ,  is calculated in an ordinary way from the linearised RG transformation at the fixed 
point. 

On the other hand, having more coupling constants than probabilities of state, we 
cannot obtain the RG trajectories in the whole coupling-constant space. However, with 
the same success as in the even subspace the procedure can be applied also to the odd 
subspace containing the fixed point ( K  *, h * )  = ( K  T, K $, . . . , KT , 0, 0, . . . , 0). In the 
same way we obtain the transformation for j + k odd constants hj and the magnetic 
critical exponent yh. 

The treatment of the antiferromagnetic phase transition is similar to that mentioned 
above. Now, we have only to change the sign of spins in one of two sublattices in 
both the old and new lattice before application of the majority rule in the RG transforma- 
tion. The number of probabilities is now larger than in the previous case due to the 
presence of two sublattices. Thus, in order not to enlarge the number of coupling 
constants, only the probabilities P’, for one sublattice are obtained from the majority rule. 
The probabilities P;i for the other sublattice are calculated from CVM equations. 
However, in the absence of the magnetic field the probabilities Pi, can be directly 
expressed in terms of probabilities P’,, of the other sublattice. Hence, the number of 
independent probabilities is only j + k and it can be shown that the problem becomes 
equivalent to the ferromagnetic phase transition with the same fixed point and critical 
exponent yT .  In the system with the magnetic field the equivalence is lost and yh becomes 
negative. In a similar way the majority rule can be applied to systems with other types of‘ 
superstructure. 

Recently, there has appeared another simultaneous application of CVM and real- 
space renormalisation group (Hecht and Kikuchi 1982) to the calculation of critical 
properties of lattice spin systems. That approach, in spite of using the same kind of 
computational method, differs from our one substantially. It is closely related to the 
original method by Niemeijer and van Leeuwen (1974), but calculating RG transforma- 
tions for a finite number of coupling constants, an infinite lattice with an infinite 
number of fixed cell spins, instead of a finite lattice, is used. As the results of the 
method depend on an arbitrary choice of configuration of superfluous cell spins, a 
number of critical exponents and critical temperatures instead of one set of exponents 
and one critical temperature is obtained. The RG transformations are derived from 
expressions for the free energy of the system with fixed cell spin configurations. In 
our approach there is no need for calculation of the free energy. In our opinion, our 
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method, which is based on an approximative calculation of correlation functions of 
systems of spins and cell spins in thermal equilibrium better describes the system near the 
critical region than the above mentioned one where expressions for the free energy of a 
spin system satisfying an infinite number of constraints are used. 

In order to give a simple illustration of our approach, we shall calculate the critical 
properties of the two-dimensional ferromagnetic Ising model on a square lattice in the 
lowest approximation. In this approximation our method is similar to the lowest 
approximation of the MFA method of Indekeu e? al (1982). 

In our simple scheme only one odd correlation function (magnetisation), one- 
dimensional even and odd coupling-constant space given by the NN pair interaction 
K and the magnetic field h are taken into account. The cell spin si is placed in the 
centre of a square of four spins, i.e. the scale factor 1 = 2. To calculate the magnetisation 
or probability of state of a site with the spin directed up, CVM based on the one-site 
cluster-the mean field approximation-is used. The cluster of cells is represented by 
one cell of four spins which probabilities of state have to be calculated by a higher-order 
approximation of CVM than MFA. 

Let us denote the probability of state of a given configuration of spins occupying 
a square of lattice sites by P4. Then, the majority rule can be expressed explicitly as 
follows: 

Pi( +) = P4( ++++) + P4( + ++-) + P4( + +- +) + P4( +- + +) 

+ P4( - +++) + P4( ++- -) + P4( +- - +) + P4( +- +-) (3) 

where the signs in the argument denote the signs of spins at sites of the square beginning 
from the right upper comer which determines the sign of the cell spin when Bsi = 0 
(Nauenberg and Nienhuis 1974). Using the normalisation condition for probabilities, 
the number of terms in (3) can be reduced, 

(4) 

where P2 and P3 are the probabilities of state of a nearest-neighbouring pair cluster 
and of a three-site cluster, respectively. Using the relation in Surda (1982), the three-site 
clusters can be factorised: 

( 5 )  

The same arithmetic yields also an expression for the probability of a negative sign 
of the cell spin: 

P’, ( +) = Pz( + +) + P3( + - +) + P3( + +-), 

Pi ( +) = Pz( ++) + P:( +-)/ PI( -) + Pz( + +)Pz( +-)/ P,( +). 

P’( -) = Pz( --) + Pi( +-)/ PI( -) + Pz(- -)P*( +-)/ PI( +). 

After a short manipulation it is seen that our approximation conserves the normalisation 
condition 

PI(+)+P’ , ( - )=  1. (6)  
The factorisation in ( 5 )  is based on the idea that two NNN spins s l ,  sz with a fixed 
spin s3 between them are to some extent independent and the conditional probability 
in their state can be expressed as a product of conditional probabilities of states of 
spins sI, s2: 

p 3 ( s l s 3 s Z ) / p ( s 3 )  = (p2(sls3)/p(s3)(P(s3~Z)/p(s3)). (7) 
This relation is the lowest approximation to an exact equality in which an infinite line 
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of fixed spins should :eplace s3. The approximation (7) is also used when one derives 
the quasichemical approximation (QCA) from the higher CVM approximation (Surda 
1982). Thus, QCA is the most suitable method for calculation of spin system probabilities 
which appear in (5) being of the same order of accuracy. QCA is given by the following 
two equations: 
P2(++)P2(- - )  = e P 2 ( + - ) ,  

The cell spin system is described by MFA, 

P:(++)/ pi(+) = e-2hP:(--)/ P ; ( - ) .  (8) -4K 2 

2 h ' - 8 K ' +  16K'Pi(+) = -In Pi(+)/Pi(-) .  (9) 
The two approximations, MFA and QCA, are the two lowest CVM approximations 

and can easily be obtained from the general formulation of CVM (Surda 1982, Surda 
and Karasovi 1983). On the other hand they have been well known for a long time. 
Their combinatorial derivation is described e.g. by Hill (1956). 

To get the relation between K '  and K and between h' and h we have to solve (59, 
(6) ,  (8) and (9) together with the normalisation conditions 

PI(+> = PA++) +P2(+->,  

P2( ++) + 2P,( +-) + P2(--) = 1 .  

PI(+) +PI(-) = 1, 

(10) 

Performing the calculation first in the even subspace, we put h = h' = 0 and K = K '  = 
K * .  To obtain the unknown probabilities P I , , ,  P', and the fixed point value of the 
coupling constant K *, we have to solve the nonlinear system of equations (9, (6), (8), 
(9) and (10) numerically. (In fact, it may be reduced to only one nonlinear equation.) 
Having the value of K *, we perform the derivative of all equations with respect to K 
at the fixed point K = K * ,  h = 0. From the resulting system of linear equations the 
Value of (aK'/aK), = K * , h = O ,  which is equal to an exponential function of the thermal 
critical exponent 2yr, is obtained. 

Similarly, in the odd subspace, after performing the derivation with respect to h 
at the fixed point, the system of linear equations yields ( t Ih ' /ah)K=K*,h=o = 2 y h .  

The results are given in the following table, where also the exact results are presented 
for comparison. 

Our results Exact results 

K ,  0.442 
YT 1.000 
Y h  1.842 

0.441 
1 
1.875 

Comparing our results with results requiring the same effort of other authors (Niemeijer 
and van Leeuwen 1974, Indekeu er a1 1982), we see that an improvement of about an 
order has been obtained. 
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